Tuesday, September 18, 2018

4. Median of Two Sorted Arrays(Leetcode) Accepted solution

class Solution:
def findMedianSortedArrays(self,l1,l2):
sorted_new_list = l1 + l2
sorted_new_list.sort()
val = len(sorted_new_list)
if (val % 2 != 0):
return float(sorted_new_list[val //2])
else:
num1 = sorted_new_list[val//2 -1]
num2 = sorted_new_list [val//2]
return (num1 +num2 )/2
a = Solution()
print(a.findMedianSortedArrays([1,2,3,4,5] ,[6,7,8,9]))

Monday, September 17, 2018

leetcode problem2 (brute force) not all test cases passed

class Solution:
  def lengthOfLongestSubstring(self, s):
    if len(s) == 0:
      return 1
    else:
        self.l = ''
        self.count = 0
        self.mlist = []
        length =0
        for i in s:
            if i not in self.l:
                self.l += i
                self.count +=1
            elif i in self.l:
                self.mlist.append(self.count)
                self.count =0
                self.l = ''
                self.l +=i
                self.count +=1
            #return max(self.mlist)
            for i in self.mlist:
                if i > length:
                    length = i
            return length

a = Solution()
print(a.lengthOfLongestSubstring(""))

Tuesday, September 11, 2018

Leetcode problem1 brute force

class Solution:
def twoSum(self,nums, target):
thisdict = {}
#new_list = []
for i in range(0,len(nums)):
thisdict[nums[i]] = i
for i in thisdict:
rem = target - i
if rem in thisdict and rem != i:
return[thisdict[i],thisdict[rem] ]
a = Solution()
print(a.twoSum([3,3],6)) # It doesn't satisfy this use case

Data science class statisctisc

''def mean(x):
sum = 0
avg = 0

try:
for i in x:
sum+= i
avg = sum /len(x)
print(avg)
except ZeroDivisionError:
print("Division by zero error")
mean([])'''

import math
def mean(x):
return sum(x)/len(x) if len(x) is not 0 else 0
print(mean([1,2,3,5]))

def de_mean(x_list):
return abs(x_list[i]-mean(x_list[i]) for i in range(len(x_list)
print(de_mean([1,2,3,4,5]))







Tuesday, September 4, 2018

Python Data visualization, (Applied Data Science Class)

#sample code for plotting a bar diagram

import matplotlib.pyplot as plt
movies = ["Annie Hall", "Ben-Hur", "Casablanca", "Gandhi", "West Side Story"]
num_oscars = [5,11,3, 8, 10]
xs = [i + 0.1 for i, _ in enumerate(movies)]
plt.bar(xs, num_oscars)
plt.ylabel("# of Academy Awards")
plt.title("My favorite movies")
plt.xticks([i + 0.5 for i, _ in enumerate(movies)], movies)
plt.show()




#Create a Histogram of 1000 random grades

from collections import Counter
import matplotlin
matplotlib.use("Agg")
import matplotlib
grades =[]
#create a list of 1000 random grades between 0 and 100
decile = lamda grade:grade // 10 *10
histogram = COunter(decile(grade) for grade in grades)
plt.bar([x-4 for x n histogram.keys()], histogram.values(), 8)
plt.axis([-5, 105, 0, 5])
plt.xticks([10 * i for i in range(11)])
plt.xlabel("Decile")
plt.ylabel("# of Students")
plt.title("Distribution of the grades")
plt.savefig("histogram.png")