Tuesday, September 4, 2018

Python Data visualization, (Applied Data Science Class)

#sample code for plotting a bar diagram

import matplotlib.pyplot as plt
movies = ["Annie Hall", "Ben-Hur", "Casablanca", "Gandhi", "West Side Story"]
num_oscars = [5,11,3, 8, 10]
xs = [i + 0.1 for i, _ in enumerate(movies)]
plt.bar(xs, num_oscars)
plt.ylabel("# of Academy Awards")
plt.title("My favorite movies")
plt.xticks([i + 0.5 for i, _ in enumerate(movies)], movies)
plt.show()




#Create a Histogram of 1000 random grades

from collections import Counter
import matplotlin
matplotlib.use("Agg")
import matplotlib
grades =[]
#create a list of 1000 random grades between 0 and 100
decile = lamda grade:grade // 10 *10
histogram = COunter(decile(grade) for grade in grades)
plt.bar([x-4 for x n histogram.keys()], histogram.values(), 8)
plt.axis([-5, 105, 0, 5])
plt.xticks([10 * i for i in range(11)])
plt.xlabel("Decile")
plt.ylabel("# of Students")
plt.title("Distribution of the grades")
plt.savefig("histogram.png")

No comments:

Post a Comment